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ON NECESSARY AND SUFFICIENT CONDITIONS FOR THE CONVERGENCE

OF THE RENEWAL DENSITY
by

Welter L. Smith (1)

1. Introduction.
Iz k(x) 1is any non-negative function in LJ.("’ +»), and if we

write k*l(x) = k(x) and
+oo
k*n(x) = f k*(n.l) (x-z) k (z) 4=z

-0

for n=2, 3, ..., then the function
-}

afx(x)] & = X (x)
n=l

is defined almost everywhere (although it is possibly infinite for some,
or even almost all, x).

Suppose f£(x) 1is the prcbability density function of a random variable
X, the meen value of which, u, = 8 X,» is strictly positive (it my bave
the value +w). The function A /£(x) / 1s called the renewal density,
and its asymptotic behavior has been an object of study since the earliest
days of renewal theory. Interest was centered upon establishing (or deny-
ing) that ag X ===> 4w,

A[f (x)_',’ — p.l-l .

Prior to the important paper of Feller (1941) there appears to have been
some controversy concerning this asymptotic behavior. Feller provided

sufficient canditions under which the renewal density would converge to

(1) This research was supported by the Office of Naval Research under
contract No. Nonr-855(09) for research in probebility and statistics
at the University of North Carolina, Chapel Hill, N. C. Reproduc-
tion in whole or in part is permitted for any purposes of the
United States Govermment.
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the desired 1irdt. These conditions have been modified and simplified
by THcklind (1948) and by Smith (1954, 1958). The simplest sufficient
conditions to date are those given by Smith (1955); these are: (1)

P(x) ==>0 88 x > +ow; (41) £(x) e Ly, Tor some 8 >0.

In the course of same work on the theory of dams we have recently
discovered that if

wo o [ EERL
(o]

e O y x<0,

then ) =1 amd & [£(x)/ —=> 1, so that the renewal density
does converge to the appropriate limit. However, f£(x) is in no class
L,s for %>0. Thus the sufficient conditions of Smith (1935) are
not necessery. Ve refer to Smith (1960) for a discussion of this
example.

This paper is reinly concerned with establishing that a certain
set of conditions on £(x) 41s both necessary and sufficient for the
asymptotic convergence of the renewal density. Before we state this
mein theorem, however, we must introduce some notatior.

Let U(x) =P {0< x }be the Reaviside unit funetion; i.e., U(x)al 1f X0
and U(x)=0 1f x<0. For any 8 >0 define cb(x) = f£(x) U(x - 8),
and ba(x) = £(x) U(x) - cb(x); then define a(x) = £(x) - ba(x) - ca(x).
Thus a(x) vanishes for all positive x, bb(x) vanigshes outside the
interval (0, 8), end °5(") vanishes vhenever x < 3; for all x, however,
£(x) = a(x) + ba(x) + cs(x). Denote Fourier trensforms thus



o0 w
cg Q) = f e20x cy (x) ax = f o1%% £(x) ax .
-0 s

We can now state,

Theorem 1. If f£(x) is the probability demnsity function of & rendmm
variable X with a mean value B = g: X wvhich is strictly positive

(though, possibly, infinite), then in order that A [ #(x)7 —> n,™*

I e

88 X ==> m, where "l- is to be interpreted as zero if u, = 4w,

it is necessary end sufficient that

(1) £(x) ==> 0 88 X ==> +x,
and, for sane 8 > 0,

(11) 8 /o (x)] —=> 0 a8 x=—=> =,

(411) cg (@) belongs to soe class 5, vhere p .ay depend upon 8.

Furthernore, if .thesec conditions hold for sone 8 > 0, then they hold for

every 5 > 0 for vhiech

)
f £(x) ax < 1.
0

This is the first time that necessary and sufficient conditions for
the convergence of the renewal density have been established. It will be
seen that they are substantially less restrictive than the sufficient
conditions of Swith (1955); for emmple, no restraint is placed on the
behavior of f£(x) for negative x.

Condition (11) of Theorem 1 appears to 'beg the question' and does
not seem easy to verify in any particular case; however, the following
theorem enables one to recognize quickly a wide class of functions which
satisfy this condition.



Theorem 2. Suppose that, for some 8 > O,
8

b, (x) ax < 1
I

0

end bb(x) = wl(x) + wa(x), where wl(x) and we(x) are non-negative

functions which vanish identically outside the interval (0, 8) and are

such that

(1) wl+(°) ¢ I'h for scue p > O0;

(1) wy(x) = 0 (x¥) for sme M > 0;

then we mey conclude that

8[b(x)] —> 0, a8 x —=>a.

From this theorem we shall deduce a simple corollary which states
that A [ bb(x)_7 ~—>0 a8 X ;> o if f£(x) 1s monotone decreasing
in the interval (0, 8).

The motivation behind the conditions of Theorem 1 can be appre-
ciated intuitively. Only singularities of f£(x) in the open interval
(0, ®) should affect the behavior of A [/ £(x) / for very large x.
Singularities, if any, of £(x) at the origin should remain at the origin
for f*n(x), n > 1, and not be displaced to larger values of x. Thus,
for large values of x, A / 2£(x) 7 should not be affected by singulari-
ties of f£(x) at the origin. Needless to say, the 'counter-example'
from the theory of dams, which we quoted above, satisfies the new set
of conditions.

The question arises as to whether there exist probability density
functions which fail to satisfy any of the conditions of Theorem 1. We
shell show that indeed there are. In addition we shall show that if

.-y



condition (11i) of Theorem 1 is not satisfied then there exists no
large number 7y such that A [ r(x)_7 is bounded for x >y . Con-
cerning condition (1i) of Theorem 1 we shall prove

Theorem 3. If there is some interval (a, B), 0 < @ <P, within vhich

A [2(x) 7 4s bounded, then, for all sufficiently emsll 8 >0,

A[‘ba(x)_] - 0 88 X =D .

Thus, when condition (11) of Theorem 1 fails to hold for any & > 0,
the renewal density is unbounded in every interval, however smll, to
the right of the origin. On the other hand, a Corollary will show that
1t A [ ba(x)_7 tends to zero a8 x —=> ® then it does so exponen-
tially repidly.

Let 3 be the class of density functions f£(x) wvhich satisfy the
conditions of Theorem 1. It 1s of same interest to discover closure
properties of 3 . In this connection we shall prove

Theorem 4. Let t;(x), fe(x) belong to ? 3 let p, gq be non-nega-

tive constants + qQ=l; let x) be a bounded non-negative function

such that

+00
f¢(x)fl(x)dx>0 fx g (x) £(x) &x > o0 .

Then the following probability density functions also belong to '3'
+o
(1) #x) £y(x / [ #0200 u} :

(11) p2,(x) + q2(x) ,

4o
(111) f fl(x-z) 2y (z) az




Finally we shall discuss one or two minor matters, such as the
behavior of A [ £(x) 7 a8 X ==> « o , and the implications of &

recent paper by Feller and Orey (1961).

2. Preliminaries .

In all that follows £(x) will always stand for the probability
density function of a random variable X with strictly positive {posathly
infinite) meen value. This assumption will be implicit even when not
explicitly invoked. Note that there is no restriction to strictly non-
negative random variables. We shall alweys denote {; X by Ky with

the understanding, scmetines tacit, that u ™

is to be interpreted

as zero 1if Hy=o. Our argunents will involve several manipulations

of multiple, especially double, series. We shall indulge in these manipu-
lations without cament. The Justification will always be the non-
negativity of the terms involved. Nearly every statement, relation, or
equation, in this paper is really only true (or proven) for almost all x;
to avoid tiresome repetition, however, we shall always omit mention of
this 'almost everywhere' qualification.

We shall be primarily concerned with non-negative functions in
Ll(-ca, +=») and it is convenient to give this class the nane @ . Ve
shall always write h(x) for the renewsl demsity function A /[ #(x) 7/;
m,n, r, 8 and N will denote integers (frequently they are dwmy
variables in summtion); subject to the preceding exceptions, however,
we use lower case Romen letters for non-negative functions of the varia-
ble x, and usually these functions are in P .

If a and b are non-negative functions then the convolution
40

fa(x-z)b(z) az
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will always be defined (though possibly infinite). As such convolutions
will occur very often in what follows we shall denote then sinply as
a¥* or ea*b(x), whichever is the more convenient in a given context.

Notice that a¥b = b¥#a, and that, whenever the Fourier transforms exist,
(a.*b)+ = a.+ v¥ .

If k 1is eny non-negative function we shall write ko for ke
and, more generally, 2 gor k*k*(n'l). Thus, as explained in the

*]

introduction, if we define k = = k then we shall write

*n
A[X] = =& Xk .
- n=1

It is clear that the function A [k/ 1s defined almost everywhere, since
all the convolutions k'° are non-negative.
We shall also .’:rite k[l for the integral
f k (x) ax .
-

3. The basic lemmas. In this section we prove the basic lexrmes on which
our mein argument depends.
Lemmm 1. (1) If & and b are both in
lesb | = flall Holl.

(11) 12 o :I.s:l.n? and |la | < 1 then A [/ umf’
and [a/fa/ll = hall/(x-el).

?then a¥b 1sinpa.nd

Proof. (i) The fact that a® 4s non-negative is trivial; and the
fact that a¥*b 1is in Ii is & familiar property of the convolution of
two L,-functions. That || a% [[=fla || {|b || can be shown by airect

integration.
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(11) Since & 1is mon-negative it is trivial that &

is likes
vise, for n =2, 3, ..., and hence that A /[a/ 1s non-negative; more-
over, this non-negativity justifies term-by-term integration, thus

[}

lafe7] = = || &™) .

n=l

But (1) demonstrates that || a'®

I = [&]® andso leme 1 (11)
follows upon summing a geometric series.

We now define a subclass J) of § which will play an important
role in our argunents. The function a(x) ¢ 3) 1f end only i
a(x) ¢ ? and a(x) —> 0 a8 x —> o . Concerning this class
Y) we 1ave the following lemms which shows that J) is closed wader

additions, convolutions, and multiplication by non-negative constants.

Lemms 2. (1) If k € Q) and A is any non-negative mumber then
.’:.Li_:)?._'_

(11) If k, and k, are both members of JJ then both
k, +k, end k %k, are members of 7Y) .

Proof. The only non-trivial part of this lenma is the fact that

k. *k_ ¢7) 1if bota kle'n amxacf) . To prove this point

1 2

we observe first that k, *k, e @ bty Lemm 1 (1). Furthermore, given
eny € > 0, we can f£ind a large xo(c) such that both kl(x)< €
and ka(x)<c for all x >x . If, therefore, we choose x >2 x

it follows that

x/2 +o
k,* ka(x) = f + f kl(x-z) ka(z) az
- x/2

<ef k|l + e | K] -



Plainly, this implies that k, * ka(x) —>0 88 X ~=>© and the
lemma is proved.

The mutilations e(x), ba(x), 05(") of f£(x) have been defined
in our introduction. Ve next prove a lemma involving ba(x).
lema 3. If A/ b5_7 € J) end A is any real non-negative mumber
then there is a & >0 such that A[kb”_] < .

Proof. Since A[‘o&] e J) there mst be an xo(e) such that
& [by(x)7 < € forall x>x_. Inparticular, tils implies that
b;n(x) < ¢ forell x>x, endsll n, But
x/2 x
bgan(x)- f +f b;n(x-z) b;n(z) dz
) x/2

X

-2)[ b:n(x-z)‘n:n (z) 4z,
x/2

and 80, for all x > 2 xo(e) ,

*n

#2n n
by (x) < 2¢ || by || =2 ¢ |5 .

We choose & < 8 such that kA% | by, | <1. Then, necessarily,
A[by] < &[b,] eandhence A [b,, 7 e 7)) also. Thus the pre-
ceding argument on bb epplies equally well to b,, . Therefore, for
all x> 2x (e) ,

AP et (x) < 2 6 ()%)n

and so

M8
>
o’

n=l
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Sinilarly, one can show that

;:" \20-1 b;(fn-l) (x) < e
n=l
for all sufficiently large x, and & camblination of the last two in-
equalities proves the lemma.
With the aid of Lemma 3 we are able to prove the following lemme
vhich we shall use directly in the proof of our mein theoren.

Leme 4. If &[5, 7 € J) then there i1s a & >0 such that

A a+ba“_7 e)) .

Proof. Note that || & || <1 so that we may choose a A such that
0K A< 1 - ||a||.'1‘hen,by1m3,veca.nﬁnde. o,
0 <8¢ <8, such that
-1 . -n ¥
ANTb,] = & AT b
) awl o
belongstoo‘)iA[bw_,orcourse,alsobelongston .
For each n > 0 1let us define the non-negative function

(%) (s + by,) W .

un(x) = mio

Evidently,

wllo= = 3 e b+l oy ll) e ™

bell + | beull
(x- &)™

and so un(x) belongs to @ . Furthermore, since a(x) vanishes

identically for x > 0, it 1s apparent fram the definition of un(x)



that un(x) venishes identically for x > &,
Next define

-]
n
u(X) = z N (x) ?
n=), “n
vhere A is the number chosen obowve. Plainly u(x) i1s non-negative and

vanishes ldentically for x > &% , Moreover,

R S Y

nel (-] &)™

and so, by our choice of A, u ¢ L, and hence ue 9% . Ve have
therefore shown that both A /[ N\ ba*_7 and u belong to JJ and may
appeal to Lemms 2 (1) to infer that wk A [A™% by, 7 also belongs to
Y . mt '

Osnﬁl(x“un)*(x"‘b: ) € wa/ate,7,

since the summetion in this inequality involves only the "diagonal" terms

-1 o #n
thet arise in the calculation of u* 4 /A" by 7 . Tus I, u * by,
o in
and, hence, u°+ 81 un* bu_ belcnatoﬂ « However,
[ [ ] [} [ ]
*n n n+m o *n
u + I #b_ = & (atb e + T £ (7 )(atd ) # )
0" oy n Tow C . n e/ T Vo
[ [
oo m . ¥n
= Z £ (7)) (a+b,,) %= #p
m=0 n=o 2 o o
[_J
s m o
= I Z (r)(°’+ba!)*" * Day

#(k+1)

a I (a+b&._)

= A[&"’ba*‘]-
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This proves the lermm. Ve note, however, that the final algebreic steps

could be considerebly simplified if & and b were manipulated as

o
thoug they were real numbers, instead of functions forming convolutions.
It is necessary, nevertheless, to demonstrate that the desired result can
be achieved by legitimate operations on functions, and not by purely
"symbolic" open ' tons.

Lems 5. 02/ {1 - £3(0)} 1s bounded in & neighborhood of O.

Proof. It is easy to see that

* +o0
‘1-: goz}z-;/“ (1-%30:_:) 2(x)

o

and, since the integrand on the right of this inequality is non-negative,
we have that for any large positive 7,

t (o) 1
\1-: e !2 j' l-cos@x £(x) ax .
-7

)

But, given any small € > O we can find a 8(e¢) such that
(1-cosy)> 2(1-¢)y° forall | y| <b. Hence, 1f we choose
| 0| < =/r »

l-ff!O!l s 1(1-‘) f"xat(x) ax .
- = 2 s

By choosing 7 1large enough we can alweys meke

+r
f <~ f(x) ax > 0,
-7
and so the lemma is proved.

As a matter of fact, we only strictly need in the sequel the weaker
, result that 02/ { 1-¢f (Q) } is integrable in a neighborhood of the
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origin} this weaker result can be inferred from the geneyal Lemma 8

of Smith (1960 b). A desire for completeness, and the simplicity of the
above proof, suggest we give it here.

Lerma 6.

1 - sin (0/2

1 - t%e)

is a bounded function of @ .

Proof. By a well-known property of the characteristic function of an
absolutely continuous distribution, given any € > 0 there is an
n{€) >0 such that |f"(o) |<1-n forall jo]> ¢ .

Hence, forall [0 |> ¢,

1_(‘111 02)

S

S

1 - Al (9)
But, for [0] < ¢, it is easily shown that

1 - (El“%@) - 0(e%) .

Thus the lerma follows from an appeal to Lemma 5.

Lemma 7. If the function k(x) belangs to ? and its trensfom kt@‘)

belongs to Ll then

k*h(x) —> Jx]|
e

88 X «==> o (ul'l is defined to meen zero when u.l--l-w).

’

Proof. We may suppose || k || > 0 since otherwise the lerma is trivial.
Since kf(G) € L, ve have (Theorem 8 of Bochner and Chandrasekharan
(1949)) that



L

400
k (x) = -2-’1;- f e10x, Vo) ao .

Thus |k (x) | 1s bounded, by (2x1)"t | xt |, and the Riemann-ILebesgue
lemme shows that k(x) —>0 a8 [x| ==>w .
Let us next write
N
n
(x) = = Kkeg2 |,
uN n=l
Then, because all terms involved are non-negative, we can introduce the

limit
u“(x) = Nil.:n>“uu(x) = k # h(x) .
Furthermore,
\ 4 o4 t |2
Uy () nfl k' (e7)

and 8o it is plain that u;‘.' belongs to 1, end thet we may write

+e0
u(x) = ‘a'i“f e 39x  t (o) r*(o){ 1 - (‘*m)ﬂ)’l} ae.

1 - 1 (e)
Next define
Px+1/2
vn(x) = J un(z) dz
x=1/2

and note that, by the monotone convergence theorem, we can write

x+1/2
v(x) = 1 vn(x) = u (z) az
F—=>n x-1/2

Routine calculation shows that

VN" (¢0) = s—%%g)- %‘f (9) ’

so that, since (sin (0/2))/(6/2) 4is a bounded function of o, va ()

L et mi e ok . .



15

1s 8180 in L;, like Uy (¢). Thus

+c0 gin (Q/2
w(2) = v (x) "E:}:" f o 10x k+(o)f*(o){ i }ﬁ(jé }(J.-(f*(o))’"l}a °

If we now sppeal to Lemme 6 and use the fact that |£7(0)] < 1
it is clearly seen that the integrend on the right is dominated by scme
miltiple of the integreble function [k'(9)]. Moreover, lr*(o)l <1
for 811 O 4 O 8o that {r (o)}N —>0 a8 Ne=>w forall 040 .
Thus we can appeael to Lebesgue's theorem on dominated convergence to

deduce that
+00 1. sin (0/2
0 () - v () =k [ =t e)tio) — FG()?);

However, the integrand on the right of this last equation is also
dominated bty some multiple of lk (0)[ and ao belongs to L:I. Thus we
can effect a further appeal to the Riemamn-lLebesgue lemme to infer that

uﬂ(x) - v(x) > o0
a8 |x] ~=> w . Moreover, since u_ = k¥h, it follows that, as
[x] =—> w,
. x+1/2 .
k *+h (x) -f X*h(z) dz2 e=> 0,
x=1/2

The lemma will therefore be proved if we can show that, ag X ==> w,

x+1/2
k#h(z) a2z =—> u (k) .
x-1/2

To this end, let us put
x+1/2
glx) = f h(z) dz .
x=1/2

ol ettt .. e, i o
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Then g(x) can be interpreted as the expected nuuber of renewals to
occur in the interval (x - 1/2 , x + 1/2), and we can deduce frem
renewal theory that 3(x) 1is bounded and that, by Blackwell's theorem,
g(x) :-> ul'l a8 X ===> o (Blackwell (1953), Smith (1960 b)). We

can then appeal to a very easily proved lemme of Smith (1954, Lexme 1) to

infer that k % g (x) ==> p," k|| a8 x —=> = . But routine
coaputation will show that

x+l/2
k*s(x)-f k*h(z) az , ’;
x-1/2 1.

and this completes the proof.

Lemme 8. If u and v _are both members of P end 12 ve vrite

k= v + vsea [u7,

{=x + A [u],

then, for any integer N ,

A[u+!7-{+{*k+{&'2+‘.v.'.+l&“N'l)+km*A[u+v_7.

Proof. 1Iike part of the proof of Lerma 4 this lemme 1s easily seen if
we treat u, v, f, k as reals; but it 1s again, of course, desirable to
establish the result by justifiable operations.

We note first that

[ ] [
f+x*a/uw] = v+ = a4+ L veuD + £ ve (uw)?
a=l n=l
-] [ ]
+ I T oveuTH (u+v)'”n
o=l n=l
o «© [
=2 Ut 4 £ £ ovEuUT s (uw)®
n=l m=0 n=o '
[ ] [ ] -]
=L WP +z £ & (2) u*(m+r)*v*(n+1-r) .

nsl n=0 nN=0 r=0
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o, 48
For any integers «, f, @ >0, B > 1, the temm u ¥ can arise in
the triple summation on the right in (1 + ) ways, corresponding to
rm0,1, 2 «os, O The total coefficient of u O%y'° twms out to be

() () 0)

and a simple inductive argument proves this to equal (a; B) . Thus

-] [} o
f+k*a [uv] == Wi+ £ I (a;ﬂ) u'e s P
n=l Om0 P=ul
o0
- = z (;)u*a*v*"
n=l Oo#f=n

= I (u.-l-'lr)*n
=1

= A fu+v] .
We have thus proved that the lemme holds for N = 1, and the general

result follows by repeated applications of the special result. For

example,

Afusv]=af+k*({+k*a[u+v])

«f+L*f+kCwa[ut v
and so on.

Lere 9. If h(x) =——> ul'l 88 x > » and if k(x) 4s any function

m;s then lm inf k*h(x) > w™ k| .
X o> ®




Proof. Choose a large positive nuuber ¥ and define

ky(x) = k (x) it x< 7,
= 0 otherwise.

Since k(x) belongs to L.l we can find 7y large enough so that
e i > lell - € , for any prescrivea ¢ > o0 .

1 88 X =—=> w , W8 can also find

Furthernore, since h(x) —> “l-
A >y such that |h(x) - u1°1|<c forall x>\ .

We then observe that for ell x > 2\,

Jie #u(x) - uy el | < f K (2) [blx-z) - oz < el
Thus k,,*h(x) - p.l'l ||k7|| 88 X ==>w . But k(x) Ek.,(x)
so that

n ot k*h(x) > w7t (] - ).
X w=e=> @

The lemme 1s proved by letting € > 0.

4. Proof of Theorem 1. We deal with the necessity part first.

The proof that condition (1) must necessarily hold has been attri-
buted to Peller (19%1), but we have recently noticed that Feller's proof
needs to assume the boundedness of h(x); most of our difficulties in the
present investigation arise precisely because we may not assume h(x)
to be bounded. However, the necessity of (1) is easy to prove by an
appeal to Lemma 9. We observe that h(x) satisfies the faniliar integral
equation

h(x) = £(x) + £ # h(x)

and 80, if h(x) —> pl']‘ a8 X ~==>w, it follows that
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Un swp f£(x) = p,"" - ln inf £ %h(x) .

b I X =D

An appeal to Lerme 9 then shows that we must have £(x) —=> 0.
Next, to prove the necessity of (ii), choose any 8 >0 such
that || by l| < 1. We appeel to Lemm 8, meking in it the substitutions

Nal,u=b,, v=a+ c,.. This ylelds

8’ 8

(31 o ff] = vevea[ul+o[u/+k*a [1],
vhere
K=v+v*p [}_17 ’
= (a + ca) + (a + ca) *A[bﬁj.
The functions u(x) and v(x), as presently defined, are clearly in the
class p . Thus, by an appeal to Lemma 1 it follows that k(x) 41s also
in ? and that
IIey
el = $liall + liegl } % 1+
1 - Iyl

= 1,

since [lafl + {logll + llegll = ll£fl = 1

We are at the moment assuning that h(x) —> pl'l a8 X =D w ,
and so it follows fron the properties just deduced for k(x) and from
Lerme 9 that

Uu - inf  k*A [f] > w7t

X w0

Therefore, from ( 4.1) we infer that

lim sup v(x) + v A [u(x)/ + & [u(x)7 < 0.
b I ]
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The non-negativity of sll the terms involved in the last formula
allows the deduction that A/ u/= A [b6-7 >0 88 X => =, and
thereby proves the necessity of (ii).

To conclude the necessity part of the proof we deal with (iii). We
begin by cbserving that 1f h(x) ——> ul'l 88 x —> o then there
mst be some 7y such that h(x) < 1 forall x> y. However, it
1s trivial that Nh(x) > cy'(x) forall 8>0 and all n. In parti-
cular, this last inequality will hold if we take n =m, say, where
n 1s the next integer greater than 7/8. Thus c,(x) is bounded for
all x >7y. But it is not difficult to see that, because of our choice
of m, cy(x) vanishes identically for x <7y. Thu c;m(x) 1s bounded
everywhere and, being already known to be a member of Ll’ it must elso
be a member of 1.2 By the reciprocity of I.e Fourier transforms it
then follows that (ca‘" (0))m » the Fourier transform of c;m(x), is in
L} this shovs that c:(o) 12 & nenber of I wvith p = 2n. The
necessity of (1i1) is thus established.

Let us now assume that, for same 8 > 0, the conditions (1), (i1i),
and (111) hold, and prove them sufficient to make h(x) ——> ol as

X wmD> 00 ,

Suppose first that ||b5||-1. Then b, = £ and we see from (ii)

3
that h(x) =a [ ba(x) 7 =—>0 as x —>« . It follows easily fram
this result that if k(x) 1is any bounded functiom in ? then k * h(x);> 0
as x—;>o . Comparison with Leuma 7 then shows that we must have
B = «; but this is impossible, since f vanishes outside the interval
(0, 8). Thus it must be that llbbll <1.

Next we shall show that, with no loes of generality, it may be

supposed that (s + b,) e X and that "35" > 0. For, since it is
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given that A [bb(x)_'/ >0 88 X =—=> w, and since we rust have
Ilball < 1, it is an easy matter to show that A[bbj €D) . Then,
by Lemma 4, ve can choose 8% >0 such that A /[a + by 7 € I, and
this 8% can be chosen smell enough to meke ""a* | > 0. Now the
necessity arguments we applied above to A [ f/ work equally well upon

Al bb-7’ since we are assuming A / by

X «=>® , and they allow us to infer that (bb - bb*)* belongs to some

+
<]

and c: are necessarily

bounded functions of @ it is evident that they both belong to I‘r’ vhere

(x)_7 tends to a limit as

class Lq . But we are given in condition (11i) that ¢, belongs to

L,- In view of the fact that both (by - bs*)+

r = Max (p, q). Thus, by a familiar application of Minkowski's inequality,

c:* = cg' + (by = by, )f is also in L (ve mey assume r >1).

Thus the conditions (i1i) and (111) hold with 8 replaced by &* , and,

in additicn, ve have that (a + by,) ¢ J0 and thet iy, > 0. This

completes out Justification of the claim mede at the start of this paregraph.
We shall make use in our argument of the functional identity proved

in Lerzm 8. In this lemm we take N as any integer greater than p

and let u=a +b, and v =c,. Then, in the notation of lemma 8,
(4.2) K=c, + ¢y *4 [a+ b, 7
and it is easy to deduce from Lemxs 1 that k 1ainp . Moreover,

88 M =—=>w, the function

M
m
g + I c,* (a+b,)
8t I o

increases to the !.1 limit-function k; thus it 1s a simple matter to
Justify the following term-by-term calculation of k* H

k¥ = caf + nil cJ (aF + b: )"



+

s

1-(a."'+bg)

Therefore, if we use the fact that [af + b:' | < lal+
"bb | = 1-] cy | € 1, we cen deduce that

[xt] < L legt |

- - e + s

A

leg* 1/ 1l ey |l

But et | < llogll 50 timt 1t 16 cbvious now thet [kt | belongs
to L end is bounded by unity. Thus [kt |¥ velongs to L, , and we
can appeal to Lemma 7 to infer that, a8 X > o ,

(3) xVan(x) —> pt x|

However, it can be shown by using Iemma 1, that

fo +
uxu-uebu{ 1. =108 } 1,

1- I - vy

so that (4.3) can actually be written more simply as

8 XTen(x) —> .

let us return to (4.2). We have shown that A [a + bb_7 may be

assumed 1n ¥Y and conditicn (1) shows that ¢, is in 3 . s an

]
appeal to Lexma 2 proves k ¢ ‘n . Employing further notation from
Ierxe 8 we have l-k+A[a+b6_7 is also a number of N .

# #(N-1)

Thus, by Leema 2, f+ f*k+ f*k -+ ...+ [ *k belongs

oM . But lLemxmn 8 shows that

(x) = f(x) + £ # k(x) + ... + £ * D) () ¢ ' % n(x) ,

80 the theorem is proved by an appeal to (4.4).
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8. Proof of Theorem 2. Since ]v;(c)l < lhrl(x)l <1 we can suppose

P> 2. Choose 3% >0 so that

a%
6[ v, (x) ax < -;(E::_-'é-)——
and then define
wy(x) = wy(x) it x< o ,
= 0 otherwise ;
'il(x) = bb(x) - 712(::)

wy(x) + (wy(x) - wy(x)) .

It is apparent from the hypothesis that "2(") - '1"2(::) is a bounded
integrable function, and therefore it belongs to I.2 Thug ite transform,
w: (o) - ’iat(o), also belongs to L, and, since

|w2+ (o) - 32"’(0) | < ||v2 - ?;2|| < 1, it follows that wg' (o) - 'iaf(o)
belongs to L (recall that p > 2). By Minkowski's ineguality the sum of
two Lp - functions is another I‘p function (for p >1). Thus
711(:) - wl(x) + (we(x) - Ea(x)) is a non-negative functi on vhose Fourier
transform is in I.P In other words, with no loss of generality, we may
suppose it possidble to write ba(x) = wl(x) + wa(x) vhere in addition to
the proparties required of \rl(x) and we(x) in the emunciation of Theorem
2 ve also have |lw,]l < o~(2)

Ve shall next prove the intermediate result that, for some comstant

7 o

(5.1) o 0 < iy

forall n and all x>0 .



2l
We may, by hypothesis, choose & 7 80 that w (x) <yx -M for
all x >0. lLet us meke the inductive hypothesis that (5.1) is true

for n = 1, 2; seey M. Then

x/2 X
w;(ml) (x) sf + / w;m (x - z) v, (z) d¢z

o x/2

(1/2) j/w(z) dz +—'%M\/(2 (z) as

<
Y 4
< 2m.1 (x /2 )M “"2" + 'i;-/-a—)u—- “\f;m“ .

Evidently, by Lerxa 1, "";m Il = llwal'm ; and we have shown it
possible to suppose with no loss of generality that lhw,ll < o~(#2)
Thus

w;(mﬂ)(x) <

and, since nﬁ+2m-ug n+l for all n > 1, it follows that

V;(ml)(x) < ﬁ_ ,

80 that the inductive hypothesis is continued. Since this hypothesis is
true for m = 1, the validity of (5.1) is thereby established for all m.

Hence,

M8

afw(x)7 < =z F

-+ .

A




and g0 A[wa(x)_7 —>0 88 X ==> o .
Let us next choose an integer N > p and appeal to Lemma 8 again,

this time with the substitutions u = Vi and v = wl .

+w %4 VA '2-7 and 80, in view of the result just proved, k ¢ Y)

Then k-wl

Thenceitfoumthatl-k-o-A[wa] also belongs to ¥) . Thus, by
Lenma 2,

(5.2) £ (x) + [ *k(x) + ... + { #x"F) (5y 5 o,

*N
a8 X ==> o« . PFurthermore, k *A[vl-i-we_] is an L, function
vhose Fourier transform can be shown to be dominated by

I, I N (X
lw: IN 14+ 2 1+ 8

1 - [yl 1 - [yl

This Fourier transform must therefore belong to Ll’ because of ocur assump-

tion about w]'_'. . We saw at the beginning of the proof of lerxa 7 that
a function whose Fourier transformn is in L:I. mst be bounded and must
tend 0 zeroas X —>w . Thus k' *# A [wl(x) + va(x)_7 —> 0

a8 X -—> ® ; this fact, coupled with (5.2) and Iemms 8, is

enough to show that
A [bb(x)_]g a [wl(x) + we(x_ﬂ >0 88 X w=D>w .
The leaxm is therefore proven.

Corollary 2.1. If, for some B > O for which ||b°|| < 1, the function

£(x) 1s monotone decreasing in (0,8) then A[b°_7 e .

Proof. If f£(x) is monotone decreasing in (0,8) then we observe that

g/l
-} 5 b L)
z f(—-ﬁ) - < z £2(x) ax ,
n

n=l ot B A
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since f£(x) ¢ L,- Thus, for some y >0 andall n> 1, £(8/2%) <
2% y/8 . Therefore if x is any mmber in (0,8), and we choose the in-
teger m so thet 3/21 < x < 3/2%, then 2(x) < 2(3/2™) <
™1 /8 < 2y/x. Hemce £(x) = O (x"Y) in (0,8) and the
corollary follows from Theorem 2.

Notice that if £(x) is monotone increasing in (0,8) then £(x)
mst be bounded in (0,8*%) for any &* < 8, and it then follows at
once fram Theorem 2 that A[bb*(x)] -;> 0 a8 X => ®

6. Sone e:m:gles. It 1s of interest to consider briefly some cases in

vhich certain of the conditions of Theorem 1 fail to hold.
Suppose that f£(x) does not tend to zero as X —=> « . Then,
for some fixed € > O and all large 7, the set of x-points
{x x>y, 2(x) > e} has always strictly positive measure. Since
£(x) belongs to L, we must conclude that the graph of the Ttail’
of f£{x) which trails +e must contain an infinite sequence of
'spikes' which grow thinner and thinner as we go towards + « , but
which are alwys of a height greater than ¢ . The density function
h(x) will also exhibit these occasional thin 'spikes' a8 X —> = .
If £(x) does not satisfy (1i1) (we skip (ii) for the mament)
then we see, from the proof of the necessity of (1ii), that there is
no large 7 such that h(x) <y forall x>y . For, if there were

gsuch a 7 then a very slight variant of that necessity argument would
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show that (11i) is satisfied. Thus, vwhen (11i) is unsatisfied the renewal
density is unbounded for all large positive x. An example due to
Kolmogorov and Gnedenko (19%8k, p. 223) and used by them in another
connection provides us with an example of a density which fails to
satisfy (11i). They show that if we define a frequency function

ol

glx) = 11 for x| <

= 0 otherwise ,

then there is, for every n 2 1, a constant C > 0 such that

¥ cn
g (x) >
Ix 106 12| |

for all x 1in a neighborhood of the origin. Tus gt (0) can be in
no class Ib’ for otherwise g*n(x) would be bounded for all n > p,
vhich is not the case. Thus we can take f£(x) = g(x - 1), say, for
our example of a density which does not satisfy (iii).

Iet us now assume, terporerily, that Theorem 3 has been proved, and
turn our attention to constructing e probability density function which
does not satisfy condition (ii) of Theorem 1. For any integer n we
can choose n such that

1 1

l- - < n < 1 - ——
2n” -1 on
Then the function
g(x) = x for 0 < x < 1,

= 0 otherwise s
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is in ? and has a Fourier transforn g*(o). Furthermore it follows
from Titchmarsh (1948, p. 172) tha.t there is a constant 7y such that

lg*(O)]M y I 9]“'1 a8 IOl -—->¢ . Thus it appears that 1'(9)

is in L o ? butinnoclase I‘r vhen r 1s an integer < 2n2
2n

For n=1, 2, ..., let fn(x) be a function of? vhose integral

-lo

1s 2%, vhich venishes outside the interval I, = (o™ - 1™, n"lwn™),
ard vhose Fourier transform is in L 2 but in no class Lr vhen r
is an integer < on® . 1. Sucha ﬁa:;ction fn(x) can obviously be
constructed by a suitable shift and scale changes on the example g(x)
Just discussed.

Define

£(x) = n:.;l . (x) .

Then £(x) is evidently a probability density function, and it is not
aifficult to see that f£(x) satisfies conditions (1) end (1ii) of
Theorem 1 (the latter condition for every 8 >0 ). However, suppose
we consider any smll intervel (a, B), 0 <@ <B. We cen choose large
integers r and n such that

T o 1
;2<1: -:2- < ';(9-0);

X

a+%(5-a) < 5 < B - 5 B-a).

Then the function r (x) venishes outside the interval

(% . =
n -

n

S

+ar)
=

vhich lies entirely within (a, B). If f." (x) were bounded then its

trensform vould be in I, and o0 r* vould be in L, . But r< n°

snd 80 we may conclude that f (x) is not bounded in (a,B). But it
is clear that b (x) & A [2(x) 7 > f:r (x). Thus the renewal density
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h(x) 4s not bounded in any interval. Since #£(x) satisfies conditions

(1) and (11i) of Theorem 1 it appears that condition (ii) mmet fail to
be satisfied.

7. Proof of Theorem 3 . Forany n>1

(7.1) b:n (x) = f....fba(zl)bb(za-zl)... b(x'zn-l)dzldza'”d’n-l .

If we suppose x > + & then, in order that the integrand in (7.1) be
non-zero, there rmst be an integer m such that (if we define z, = 0),

zm_l<a and aszm<a+ 8. Therefore, for x>a+ 8,

*n nel
bb (x) - mzl f se e f bs(zl) toe bb(x - zn-l) dzl ce dzn-l
a< 2, <a+d

zm-l < e

n-l
5 Z f se0 f b (z ) see b (x -2 ) dz o0 dz
ol 1 8 n=-1 1 n-1l

<
aSzm a+ 8

nel a+ B
(7.2) = ::1 f b:"“ (z) b;(n'm) (x -2) az .
x
For this proof let us write A /[ ba(x)_'] more simply as hy(x).

Then we can conclude fram (7.2) that for x> a+ 8

() = I uR (o

o  nel a+d
<z = f b;m (z) b;(“"“) (x - z) az
n=2 n=l a
a+ 8
(7.3) < f hs (2) hb(x -2) a .
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Nov suppose we are given that h(x) < y in (a,8). Lat us choose
8 < (B-x). Then (T7.3) proves that

+8
(7.4) hy(x) < 7 7%(1- z) dz
a
for all x> q+ 8. But it is well-known in renewel theory ( and a fact

already utilized in the proof of Lemme 7) that

X+ 9
h(z) az
x
is a bounded function of x. Thus, since hb(x) < h(x), it follows

from (7.%) that hs(x) is bounded for all x > q + .
However, ha(x) satisfies the integral equation ha(x) = bs(x)

+b6*hb(x)’ and so, for x > 8 we have
3]

ha(x) = f hb(x-z) bb(z) az .

)
Thus, if we agsune y >> a + 8, so0 that ha(x) is bounded in the

dormin of our discussion,

sup (x) < v, sup (x) .
y-l-bf::_fy-l-aahb 8 Y<x<y+2b "
If we choose 8 > 0 srall enough to meke lfbbll < 1 then it is clear that
the last inequality irplies that

sup ha(x) < iyl sup ne(x)
Y+8<x<y+2d Yy<x<y+38
and hence that hb(x) ——>0 88 X ==> + ® , at an exponential rate.
This proves the theoren.

We can thus conclude that i1f there is no 3 > 0 such that

YA 'ba(x)_7 —=> 0 then there is no interval to the right of the origin



31
within which h(x) 4s bounded.

We have incidentally proved:

Corollary 3.1. If A [bs(x)_] ~=>0 88 X -=>o» then there is some

n >0 such that, a8 X —=> m,
a[vy(x) 7 = 0(e™) .

As a ratter of fact one can show that n = 8L 108 (1/|lbb||)5 we leave this

point as an exercise for the interested reader.
8. Proof of Theoreu 4. (1) Let us write

B(x) = g(x) 2(x)/lId(x) 2(x)]
end a, Bb’ 58 for the mutilations of ¥ corresponding to the mutilations

8 byy ¢y Of f. Obviously F(x) —>0 as x —> = if £(x) —> 0.
Further, if we write

= gup __.?.(EL..
llgx)2 ()l

it is clear that l‘E: | < & Jeg¥| ana theretore 'é:’ belongs to any

class I, of vhich cg 18 a member. Finally we notice that

A [ By(x) ] < & [by(x) ] end so, by Lewme 3, A [ By(x) 7 —>0
88 X ===>w®, for all small 8, provided & [bb(x)_'/ -—> 0 for sone
8. This proves part (1) of Theoren k.

-(11) Here we write £(x) = PR(x) + qf,(x) and erploy similar no-
tation to that just adopted in (1). Plainly F(x) —>0 a8 X =—>
if both fl(x) -;>o and fa(x) -—>0, If c* ¢L and ot ¢l

18 P 20 q

then it 18 easy to show '66' € L, vhere r = Mx (p,2,2). Finally

we note that

[ n
- *p #g
6 b7 = & ) ( ) P v * 1
8- n=l 1r+ssn \ r 13 28
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[ ]
< I z b
~ nel s=n

= Afb,T * & [, 7.
But, 1f A /b, 7 and A& [ by, 7 belong to 7) then, by Lemsa 2,
afv,7 * af b, / belongs to 0 , end hence & [ By(x)_7 —>0
88 X ==> w, This proves (11).
(111) For this part we write T = £, # f,. If both £, end f,
velong to J) then, by Lems 2, ¥ belongs to 30 . If cl'}; « I
and ¢, f € Lq then they both belong to L., sey, where r = mex(p,q,2).

.‘. f* + ¢ 1’ * also belongs to L and there E therefore an

Thus ¢35 T 28
integer m, say, such that (c., * f, + ¢ ) is & 'bounded function.
16 2 26 1{ .F 6. -
- =im
But it is clear that ¢p< Cyy * L+, ¥ 80 we 1nfer that ¢y,

1s also & bounded function. Thus 3:3 belongs to 1.2, vhich implies that
1..

Cge belongs to L,‘,m Finally we must show that, for some 3 >0,

5[ 5yx)7 —>0 as x —>m Demote (} £,() + 3 £,(N™ vy ),
and denote mitilations of f(x) in an obvious wey. Then it is clear

that (x) + 'é 2(x) belongs to 3’ , by part (1) of this proof.

Thus A [ 1 1(x) +3 fa(x) 7 1is bounded for all large x. But it is
not difficult to see that A /° r(x) 7 < a [ 3 1(x) + 2(x) 7

for ell x. Thus A ZJ\(x) 7 is tounded for a1l large x and 8o, by

A *2
Theoren 3, A[A(x)'?_.>o a8 X ~==> o, However, f = %fl
1 1l %
Efl*fa*‘;fe' eothe.t-'s(x)< b(x), and we have

. .
sl 3 'Ga(x)_'] e=>0 &8 X ==>w. We can now appeal to Lexma 3
to infer that A [ Ba(x)_7 —>0 a8 x ——>u for all sufficiently

smell 8. This proves the theoren.
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9. Concluding observations. Smith (1955) discussed also the behavior

of h(x) as x ==> - » . This is equivalent to supposing Wy <O,
instead of My > 0, and still letting X == > + w. The only place in
our argunments vhere we have used that By >0 1is in the proof of Theoren

1, vhere ve wanted to conclude that if
x+1/2

g(x) = f h(z) dz
x-1/2
then g(x) ==> ul'l a8 X =~=>+ o , Jt 18 an easy consequence of

renewel theory that if we were to have Hy < 0 then we would have

g(x) =~>0 a8 x —=>+ w. The rest of the proof of Theorem 1 would
hold without chenge and allow us to econclude that if Hy < 0 then con-
ditions (1), (11), and (111) of that theorem are necessary and sufficient
to have h(X) ==>0 88 X ==>+ o .,

Feller and Orey (1961) heve recently showm that g(x) 1s unifornly
bounded and g(x) ==>0 @8 X ~=>+ @ for certain gituatioms in which
& X cannct be defined. It should be cleer that we can use our re-

sults here also,to conclude that for densities f(x) associated with
distributions of the kind envisaged by Feller and Orey, the conditions
we give are still necessary and sufficient for the convergence of the
renewal density.

In conclusion we meke the following observation. If F(x) d4s the
distribution: function associated with the probability demsity £(x) then

we have been assuming, of course, that F(x) 1s absolutely continmuous.
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However, it is possible to prove our theorems assuniing that F(x) is
absolutely continuous only over the open interval (0, »). We can allow
F(x) to be singular over (-, O/. Admittedly the renewal density func-
tion 1s no longer defined for negative x, but this need not trouble us.
We are only concerned with h(x) for positive x, and here h(x) re-
reins defined. Perusal of our arguments will show that the only modifdcation
needed is to change the L,-function a(x) into a certain monotone non-
decreasing function A(x), say, and to change all convolutions with a(x)
into Stieltjes convolutions with A(x).
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